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Abstract—E�cient and low latency solution to cache
coherence problem in shared memory multicore sys-
tems on Network-on-Chip is a crucial issue for improv-
ing system performance and scalability. The existing
works utilize planar metal/dielectric interconnects to
solve this problem. However, as the number of cores
on chip increase, such solutions face high latency due
to increase in long-range multi-hop communication
between distant cores. In this paper, we propose a
novel multicore hierarchical cluster based architecture
that utilizes a hybrid NoC having both wired and
wireless interconnects. The wireless interconnects on
chip replaces the long-range multi-hop communication
path to single-hop low latency connections. We also
propose a utilization based clustering of cores. Finally,
we present a novel cache coherence algorithm for the
designed architecture. To the best of our knowledge,
our work is the first to utilize wireless interconnects to
solve the cache coherence problem in multicore system
on NoC.

We evaluate our system through analytical as well as
system level simulations on GEM5 running SPLASH2
and PARSEC benchmarks. Through our evaluations,
we find that our proposed architecture achieves an av-
erage of 94.4% reduction in overall memory overhead,
30% reduction in average L2 access latency and 32.1%
reduction in L2 miss rate compared to conventional
non-clustered directory architecture. Our solution also
exhibits a notable decrease in overall execution time,
memory requests and miss latency for all benchmarks.

Keywords-Cache Coherence, Chip Multiprocessor
(CMP), GEM5, Multicores, Network-on-Chip (NoC),
PARSEC, SPLASH2, Wireless Interconnects (WI).

I. Introduction

Continuous increase in processor frequency has reached
its limit in terms of power consumption, which has steered
the path towards multicore design strategy. Recent years
have witnessed the emergence of Chip Multiprocessors
(CMPs) that utilize the increasing number of transistors
on a chip. Multicore processors have the advantage of
running on slower frequencies and yet performing much
better than single-core processors running at a higher clock
rates [1]. They also o�er several other benefits such as
reduced cost, increased reliability, increased throughput
and much lower power consumption. In multicore sce-
nario, the cohesion between inter-core communication and
computation of a workload is quite complex. Network
on Chip (NoC) helps to decouple communication from

computation. NoC provides a low latency, high bandwidth
and scalable network communication for large multi-core
systems. As computation time of a core is considerably
lower than shared memory read/write time, the entire
execution is slowed down by memory I/O. On-Chip local
cache memories are usually deployed to overcome this
issue.

The overall memory structure comprises of an associ-
ated L1 cache with each core, a shared L2 cache, and a
globally shared main memory. Cache coherence problem
occurs when multiple cores try to update the same data
simultaneously in their local L1 cache which in turn results
in an inconsistent global value. A cache coherent system
achieves a consistent view of memory by following a valid
order of reads and writes to the memory using several
protocols. Such protocols utilize two basic operations:
write invalidate and write update [2]. Write invalidate
ensures invalidation of copies of the shared data in every
cache before the write operation. Write update maintains
coherence by sending update information for all modifica-
tions to sharers. Write invalidate increases cache to cache
miss whereas write update produces high tra�c especially
in cases where updated block is not used by the sharers
until the modifying processor is finished with the updates.
Hence, there can be no single cache coherence protocol
that works well for varied workload applications, cache
configurations, and interconnection parameters. Various
hardware and software based cache coherence protocols
have been proposed each having its trade-o�s between
cache miss latency, overheads, tra�c generation and con-
trol [3] [4].

Traditionally, wired metal interconnects are used be-
tween tiles to enable them to communicate. However,
they su�er from high latency and power consumption in
case of multi-hop communication between distant cores.
Thus, there is a need to look beyond the metal/dielectric
based planar architectures and move towards new and
emerging interconnects [5]. One such possibility is wireless
NoC architecture that has emerged as energy e�cient and
high bandwidth communication backbone for multicore
platform [6].

In this paper, we propose using these wireless links to
solve the cache coherence problem. We propose a new
hierarchical cluster based cache coherence scheme and
replace multi-hop wired communication paths in a NoC



with long-range wireless links. The scheme is e�cient and
has the capability to support large tra�c on all topologies.
We extend the existing directory architecture to achieve
coherence.

We present following contributions in this paper:
i. We define clustering constraints to group the cores

into hierarchical clusters based on their utilization.
ii. Long-range, single-hop wireless links are used to

ensure low latency communication between distant
cores.

iii. We propose a novel cache coherence algorithm that
ensures faster operations by using wired interconnects
for intra-cluster communication and wireless intercon-
nects for long-range inter-cluster communication.

The rest of the paper is organized as follows: We discuss
the related work in Section II. Section III discusses the
proposed architecture in detail. In Section IV, we evaluate
our proposed system through analytical as well as system
level simulations. Section V concludes the paper.

II. Related Work

Many e�cient protocols have been proposed and im-
plemented to address cache coherence in multi-core ar-
chitectures. When system size is very small, bus-based
snoopy protocol [7] is employed. As the number of cores
on chip increases, snoopy protocol leads to high tra�c
and saturation. Directory coherence protocol [8], which
uses a global directory to keep track of coherence performs
well for large systems. However, it su�ers from additional
memory overheads.

Several works have been proposed to reduce the overall
memory overhead of a generic directory protocol and
improve its performance. Acacio et al. in [9] proposed
a two-level directory structure with a fully mapped pri-
mary directory and compressed secondary directory. In
[10], they further improved their methodology by adding
a compressed directory within the main memory. Many
authors have also designed a scalable directory coherence
scheme for multicore architectures with NoC. In [11], the
authors discuss a method to partition memory into local
and shared segments. However, the proposed method fails
to provide caching of shared data which limits its per-
formance. Eisley et al. [12] discussed coherence protocols
and directories embedded in NoC routers, which increased
the complexity of the directory structure. Girao et al. [13]
proposed a traditional full mapped directory but is not
scalable for large systems. Zhang et al. [14] proposed a
hierarchical cluster based coherence scheme. They reduced
the overall memory overhead by assigning a head node in
each cluster to form a two-level tree structure. Li et al.
[15] introduced small cache that holds recently accessed
cache lines along with L2 cache slice as fast directory to
provide low hit latency. The solution su�ers from increased
memory overhead due to inclusion of new cache in the
architecture.

In this paper, we propose to solve the cache coherence

Figure 1: The proposed architecture of a 64 core system
with wireless interconnects

problem and also reduce the memory and latency over-
head, L2 miss rate and L2 access latency. We achieve
this by using a wireless NoC architecture and modifying
the directory structure. Many WiNoC architectures have
been proposed by several authors to improve the latency
and energy performance of NoCs [6] [16] [17]. However,
none of these works have tried to solve the cache coher-
ence problem using wireless NoC architecture. We use
this infrastructure and divide the system into multiple
clusters each having a WI enabled core. To the best of
our knowledge, our work is the first to address coherence
issue using WiNOC architecture.

III. Proposed Architecture

In this section, we discuss the design of system architec-
ture and cluster formation constraints. We also provide a
walkthrough example for achieving cache coherence using
proposed scheme.

A. Topology of our architecture
Figure 1 shows our proposed architecture based on a

64 core system using 8x8 mesh topology. The cores are
divided into 4 clusters having 16 cores each, and the NoC is
made up of hierarchical wireless over wired interconnects.
A single tile from each cluster is embedded with a wireless
interconnect and is called the HEAD of that cluster. The
HEAD is chosen such that it is at a minimum average
distance from all cores of that cluster. A wired tile on the
chip consists of a processor core, L1 cache and network



Figure 2: Architecture of a wireless tile

Figure 3: Extended Directory Structure

interface (NI). As shown in figure 2 the HEAD has a
wireless transceiver, L2 cache and an extended directory in
addition to the wired tile, which is responsible for delivery
of coherence information to all the clusters. These wireless
tiles are also equipped with additional transmitting and
receiving bu�ers and are inter-connected through tradi-
tional wormhole routers. The HEADs communicate in a
single-hop, broadcast fashion that significantly reduces the
overall broadcast time when compared to traditional wired
architecture.

The transmission power of wireless interconnects have
been optimized to cover the entire chip area. To avoid
interference in wireless channel, we employ fast token ring
algorithm [18] in which a token is circulated amongst all
the HEADs on the chip and only the HEAD in possession
of the token accesses the wireless channel for transmission.

B. Cluster Formation

We cluster the cores according to their utilization as
highly-utilizing cores have a higher probability of using
and updating data in cache. This results in localization of
data within a cluster.

Let a vector U of length N, where N is the number of
cores, denote the per-core utilization. Similarly, let matrix
P signify whether a core belongs to a particular cluster
or not. As our architecture is divided into 4 clusters, P
is of the size N ◊ 4. P contains either 0 or 1 as entries,
where 0 signifies the absence of a core in a particular
cluster and vice versa. We also consider a vector W of
length N, which denotes whether a core is wireless-enabled
or not. Similar to P, values in W indicate whether the
core is wireless interconnect enabled or not. Since values
of U vary for di�erent benchmarks, the cluster creation is
benchmark specific. The proposed clustering methodology
follows several constraints.

I. A core can be part of only single cluster.

Algorithm 1 Proposed Cache Coherence Algorithm
1: Input: Inv: Invalidation Signal
2: ACK : Acknowledgement
3: procedure CacheCoherence

4: Wait for Inv from RequestingNode
5: if IncomingInv W irelessΩ≠≠≠≠≠≠ Inv then

6: if IncomingInv(MemoryAddress) Directory≠≠≠≠≠≠æ
PresenceBit==1 then

7: Send IncomingInv to sharers in cluster
8: Wait for ACK from sharers
9: end if

10: Broadcast ACK via wireless
11: else if IncomingInv W iredΩ≠≠≠≠ Inv then

12: if IncomingInv(MemoryAddress) Directory≠≠≠≠≠≠æ
PresenceBit==1 then

13: Send IncomingInv to sharers in cluster
14: Broadcast IncomingInv via wireless
15: Wait for ACK from sharers
16: Wait for ACK from HEADs
17: end if

18: Send ACK to RequestingNode
19: end if

20: end procedure

’i :
3q

j=0
P

ij

== 1

II. Each cluster will have exactly N/4 cores

’j :
N≠1q
i=0

P
ij

== N/4

III. Each cluster should contain only one wireless-
interconnect enabled core

’j :
N≠1q
i=0

(P
ij

fl W
i

) == 1

IV. P and W can only contain 0/1 values
P

ij

œ {0, 1}
W

i

œ {0, 1}

C. Coherence scheme in desired architecture
We address the cache coherence problem in our pro-

posed architecture at two levels, intra-cluster and inter-
cluster. The intra-cluster cache coherence is maintained
within a cluster using the directory coherence scheme. The
shared L2 cache has an associated directory that keeps
the information about the states of member caches and
denotes whether a copy of particular data in any member
cache is valid or not.

The inter-cluster cache coherence is maintained using
the wireless interconnects connected to the HEAD node
of each cluster. In our proposed architecture, we ensure
the consistency of shared memory address in each cluster
by extending the existing directory structure as shown
in figure 3 . The extended directory has an extra field
which stores the source (shared memory) address of a data
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Figure 4: Hierarchical cluster coherence request with
Wireless Interconnects

present in L2 cache. The inclusion of this field tracks a data
entry in L2 caches of all clusters as the origination address
remains the same for all. While invalidating a memory
address, the cluster’s HEAD broadcasts the invalidate
request and the shared memory address to all clusters on
the chip. Each cluster’s HEAD checks their L2 cache’s
directory for origination addresses, and only the cores
that have local data from the same source address will
be invalidated. The proposed cache coherence algorithm
can be found in algorithm 1.

D. Walk-through example of proposed coherence scheme
Figure 4 shows our proposed architecture where each

cluster has a HEAD core namely H1 ≠ H4. The requester
R wants to update a local data and therefore needs to
invalidate all existing copies of data. The copy of the
requested data is shared amongst 9 cores (S1 ≠ S9). The
proposed cache invalidation is carried out in the following
order:

1) The requesting core R sends an invalidate request to
its cluster’s HEAD node H1.

2) The HEAD node H1 on receiving the request sends
invalidate signal to:
a) Sharers S1, S2 in its own cluster via wired inter-

connects
b) HEAD nodes H2, H3, H4 of other clusters using

wireless interconnects. The receiving HEADs fur-
ther re-route the invalidation signal to the sharers
S3 ≠ S9 after matching the source address from
associated directory.

3) The sharer cores in each cluster invalidates the re-
quested data entry in their local caches and sends
an acknowledgment back to their respective clusters
HEAD node.

4) On receiving the acknowledgment, the cluster HEAD
cores H2, H3 and H4 broadcasts the acknowledgment
to be received by the originating cluster HEAD H1
via wireless interconnects. In case of no sharers in a
particular cluster, HEAD of that cluster broadcasts

Parameter Notation
Shared memory size Si byte
L1 cache size CL1 byte
L2 cache size CL2 byte
Memory block size (L1 cache line) lineL1 byte
L2 cache line lineL2 byte
Number of L1 caches (processors) NL1
Number of L2 caches (heads) NL2
Number of members in each cluster Ncluster

Table I: Memory notations

the invalidation acknowledgment
5) On receiving the acknowledgment from all other

HEADs and data sharers from its cluster, H1 sends
the acknowledgment to requester R via wired links.

The requester updates the data value only after receiv-
ing the acknowledgment from its cluster HEAD.

IV. Performance Evaluation

We evaluate our proposed architecture using a full
system simulator, GEM5 [19]. We modify the Ruby cycle
accurate memory simulator of GEM5. Table II shows the
system parameters used during the simulations. We have
simulated 16 cores and 64 cores systems for validation of
our proposed architecture.

To evaluate our proposed cache coherence protocol,
we utilize Alpha cores using MOESI (Modified, Owned,
Exclusive, Shared and Invalid) based extended directory
scheme. We also employ a wide variety of parallel threaded
applications for our evaluation. We use SPLASH2 [20] and
PARSEC benchmarks with recommended input parame-
ters.

A. Memory Overhead Analysis
Table I shows the notations we used to derive the total

memory overhead in the proposed architecture. Memory
overhead of a directory is the total memory utilized by the
directory for its storage in bits. This can be determined
by multiplying the number of blocks in a directory to the
number of bits in each block. Following this methodology,
we compute and compare the memory overhead in
non-clustered directory and proposed clustered directory
protocol with wired and wireless interconnects for 16, 32,
64, 128 and 256 core system.
Case 1: Non-clustered directory structure:

O
NC

=
nÿ

i=1

S
i

line
L1

(N
L1 + 1) (1)

Case 2: Clustered with wired and wireless

interconnects directory structure:

O
W I

= N
L2

C
L2

line
L2

(N
cluster

+ ◊)bits (2)

where ◊ is the length of the extra field in extended
directory as shown in figure 3. The value of ◊ is taken
such that it is able to store the address of data in shared
memory.
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Figure 5: Memory overhead of 16, 32, 64, 128 and 256
core system

Component Parameters

Processor ALPHA
Number of cores 16, 64
Cache line size 64 bytes
L1 I/D cache 32KB
L2 cache bank (non-cluster) 2MB
L2 cache size (clustered) 2MB
Number of L2 caches (clustered) 4
Coherence Protocol Extended MOESI directory
Shared Memory 128MB
Topology 8x8 Mesh with wireless

interconnects

Table II: System parameters

Figure 5 shows the memory overhead of 16, 32, 64, 128
and 256 core systems. It can be seen from the results
that while increasing the number of cores, the overhead
of our system remains fairly constant when compared to
non-clustered directory. We observe 88-97% decrease in
memory overhead compared to non-clustered architecture.
These results support our claim of scalable cache coherent
architecture.

B. Execution Time
Figure 6 shows the comparison between normalized

execution time of our proposed clustered architecture to
that of non-clustered architecture for 64 core system. It is
evident from the results that our proposed protocol design
achieves 21% speedup compared to non-clustered direc-
tory. This increase can be accounted to clustering of cores
based on their utilization which results in localization of
network tra�c and cache data.

C. L2 cache access latency
Figure 7a shows the simulated results of L2 access

latency for di�erent benchmarks on a 64 core system.
It can be observed that our architecture achieves a 30%
improvement to non-clustered architecture.

The L2 cache access latency for an architecture is
directly proportional to inter-core Manhattan distance.
Figure 4 places the HEAD core of a cluster at a maximum
distance of 4 hops to any core of that cluster. This scenario
is the worst case for a 64 core system. Therefore, the
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Figure 6: Normalized execution time for di�erent
benchmarks

worst case Longest Manhattan Distance (LMD) of our
architecture is of 9 hops due to the inclusion of single-
hop, long-range wireless links. On the other hand, a non-
clustered system will have the worst case LMD of 14 hops.
Calculating the decrease, we verify that our simulated
results follow closely to our analysis.

D. Normalized L2 Miss Rate
Figure 7b shows the normalized L2 miss rate observed

in our simulations. The results indicate that our proposed
architecture achieves an average of 32.1% reduction com-
pared to the traditional non-clustered approach. As we
follow utilization based clustering of cores, the data needed
by cores at execution time is at most times already present
in the L2 cache which results in lesser misses at L2 cache.

E. Area Overhead
In this section, we quantify the area overhead associated

with the use of on-chip wireless interconnects. The total
area overhead with WI (including transceiver and
antenna) is determined to be 0.72 mm2 [16]. We limit
the number of WIs to 4 in a 64 core system. Therefore,
assuming a 20mm ◊ 20mm die, the wireless interconnects
consume only ~1% of total silicon area overhead.

Even though the inclusion of wireless interconnects im-
poses an area overhead to the overall architecture, yet the
advantages of WIs outweigh its drawbacks. Other than the
results discussed above, we have also observed a significant
improvement in several other parameters. The memory
request rate decreases up to 45% and average miss latency
shows a decline of 33-39%. We also observe an increase
in percentage performance while increasing the number of
cores in a cluster.

V. Conclusion

Scalable solution to cache coherence issue in multicore
scenario is an open research problem. In this paper, we
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Figure 7: (a) Normalized L2 access latency (b) Normalized L2 miss rate for di�erent benchmarks

have used wireless NoC architecture to achieve scalability.
We cluster the cores based on utilization and remove the
long-range, high latency inter-cluster wired metal inter-
connects with single-hop wireless communication links. We
have used a simulated environment for verification of our
proposed scheme. Our mathematical analysis and simu-
lated results are in close agreement. Our system achieves
reduced memory overhead, lower execution time, lower L2
access latency, lower L2 miss rate, lower memory requests
and miss latency.
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