
Poster: ACP: Age Control Protocol for Minimizing
Age of Information over the Internet

Tanya Shreedhar
Wireless Systems Lab, IIIT-Delhi

tanyas@iiitd.ac.in

Sanjit K. Kaul
Wireless Systems Lab, IIIT-Delhi

skkaul@iiitd.ac.in

Roy D. Yates
WINLAB, Rutgers University
ryates@winlab.rutgers.edu

ABSTRACT
Real-time monitoring is characterized by a source repeatedly
sending updates over the Internet to a monitor, which desires
the sensed information at it to be as fresh (of small age) as
possible, given network constraints. We propose the Age
Control Protocol (ACP), which, in a network-transparent
manner, enables a source to keep the age at the monitor small.
We evaluate it using simulations and real-world experiments.
ACM Reference Format:
Tanya Shreedhar, Sanjit K. Kaul, and Roy D. Yates. 2018. Poster:
ACP: Age Control Protocol for Minimizing, Age of Information over
the Internet. In The 24th Annual International Conference on Mobile
Computing and Networking (MobiCom ’18), October 29-November 2,
2018, New Delhi, India. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3241539.3267740

1 INTRODUCTION
Real-time monitoring applications span across areas like
health care and natural environment monitoring. They are
distinct from that of file transfer and real-time voice/video.
Such applications have a sensor/Internet-of-Things (IoT) de-
vice (source) that sends sensed information (update) to a
monitor. The monitor desires to have the most currently
sensed information at any given time. However, the same
may not be feasible given constraints imposed by the com-
munications network. To elucidate, let’s say the source sends
fresh updates at a rapid rate. However, the faster the rate of
updates, the larger the throughput, and the larger is the aver-
age delay (Figure 1) with which an update is received at the
monitor. This is explained by the larger resulting congestion
in the network. As a result, the freshest update at the monitor
at any given time will be stale, that is of large age. Figure 1
broadly captures the behavior of the metrics of throughput,
delay, and age. The throughput increases linearly in the rate

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267740

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput

2

4

6

8

A
g
e

0

2

4

6

D
e
la

y

Figure 1: Example interplay of the networking metrics of
delay (solid line), throughput (normalized by service rate)
and age. Shown for a M/M/1 queue with service rate of 1.

Source
1

Source
n

ACP

UDP

Underlying physical
network

IP

Network

Monitor
1

Monitor
n

ACP

UDP

Underlying physical
network

IP

IoT Device Server

Figure 2: The ACP end-to-end connection.

of updates. This leads to an increase in average packet delay.
Large packet delays coincide with large average age. Large age
is also seen for small throughputs (correspondingly, small
rate of updates). At a low rate the monitor receives updates
infrequently, and this increases the average age (staleness) of
its most fresh update. Finally, observe that there exists a rate
(and corresponding throughput) at which age is minimized.

We propose the Age Control Protocol that resides in the
transport layer and operates only on the end hosts. Figure 2
shows an end-to-end connection between two hosts, the IoT
device, and the server, over the Internet. Sources at a device
open ACP connections to their monitors. ACP belongs to
the transport layer of the TCP/IP networking stack. Akin
to the real-time transport protocol (RTP) [3] that supports
voice/video applications, ACP also uses UDP for sending
updates generated by the sources. Thus ACP doesn’t guaran-
tee delivery of a source update. Inline with the goal of ACP
to optimize freshness, sending a new update is better than
retransmitting an older one.

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

699

https://doi.org/10.1145/3241539.3267740
https://doi.org/10.1145/3241539.3267740
https://doi.org/10.1145/3241539.3267740

∆

a1 a2

d1

a3 a4
d3 d2 d4

a5
d5

an−1 an
dn

t

∆(t)

A
ge

Figure 3:A sample function of the age process ∆(t). Updates
are indexed 1, 2, . . . ,n. Also, ai is the time at which update
i was sent by the source and di is the time the update was
received at the corresponding monitor.

ACP suggests to a source the rate at which it must send
fresh updates such that the average age at the monitor is
minimized. ACP adapts its suggestion to the perceived con-
gestion in the Internet. By suggesting this desired rate to a
source, ACP also limits congestion that may be introduced
by an unnecessarily fast rate of updating by sources.
Let u(t) be the time at which the freshest update at the

monitor at time t was sensed at the source. The age ∆(t) at
the monitor is the age t −u(t) of its freshest update at time t .
An example sample function of the age process is shown in
Figure 3. Age at the monitor increases linearly in the absence
of updates. On reception of an update that is fresher than
updates received in the past, the age at the monitor is reset
to the age of the update (di − ai for update i in Figure 3),
which is simply the time elapsed between its generation
at the source and its reception at the monitor. We want
to choose the rate λ (updates/second) that minimizes the
expected value limt→∞ E[∆(t)] of age at the monitor, where
the expectation is over any randomness in the network. The
expectation is not usually known and must be estimated
using measurements. Also, we would like to dynamically
adapt this λ to nonstationarities in the network.
Over the last few years, various works [1], [4] have an-

alyzed age under various network model assumptions. Re-
cently in [2], authors use deep Q-learning to optimize age
over a given network topology unknown a priori.

2 WORKINGS OF THE ACP
An update sent by the source ACP contains a timestamp ai
that is the time update i was sent (see Figure 3). A more
recent timestamp indicates a fresher update. The monitor
ACP sends an ACK packet in response to every received
update that is fresher than the previously received updates.
An ACK for update i contains ai . ACK(s) that are received
in a delayed manner that is after an ACK of a fresher update
has been received, are discarded. ACP doesn’t assume any
time synchronization between the source and the monitor.

Network Age λ Backlog
Topology Opt ACP Opt ACP Opt ACP
1 0.0143 0.0152 110 107.1 1.07 1.10
1-1 0.0244 0.0250 110 106.9 2.1 2.12
1-5 0.0165 0.0172 110 105.0 1.28 1.28
1-1-1 0.0341 0.0347 110 102.85 3.2 3.0
1-1-5 0.0263 0.0268 110 105.8 2.36 2.26
1-5-5 0.0185 0.0191 110 104.57 1.50 1.49
Table 1: Results from simulations. Step-size κ = 0.1.

An ACP connection (see Figure 4a) begins with the source
opening a UDP socket with the monitor’s advertised IP ad-
dress and port. ACP then sends a few updates to estimate
the round-trip-time (RTT) of the connection and sets the
initial rate to 1/RTT. Post this, the timeline can be viewed
as a sequence of control epochs indexed 1, 2, Epoch k
begins at time tk and ends at tk+1. At tk , the update rate is
set to λk . Source updates once every λ−1k during epoch k .
Let ∆k be the estimate at the source ACP of the time

average of the age of updates at the monitor over (tk−1, tk).
To calculate this average, the source ACP must construct its
estimate of the age sample function (see Figure 3), over the
interval, at the monitor. It knows the time ai a source sent a
certain packet i . However, it needs the time i was received
by the monitor, which it approximates by the time an ACK
for the packet i was received. On receiving the ACK, it resets
its estimate of age to the RTT of i .
Let Bk be the time average of backlog calculated over

(tk−1, tk). The backlog increases by 1 when the source sends
a new update. When an ACK corresponding to an update i
is received, update i and any unacknowledged updates older
than i are removed from the current backlog count.
We state without detail that in addition to ∆k and Bk

the source ACP also maintains moving averages Z of the
inter-update reception time at the monitor and RTT and
adapts the length T of an epoch as an integral multiple of
T = min(Z , RTT). At start of control epoch k , at time tk ,
the source ACP calculates the changes δk = ∆k − ∆k−1 and
bk = Bk − Bk−1 in average age and backlog, respectively.

ACP at the source chooses an action uk at tk that targets
a change b∗k+1 in average backlog over (tk , tk+1) with respect
to (tk−1, tk). The actions, may be broadly classified into (a)
additive increase (INC), additive decrease (DEC), and multi-
plicative decrease (MDEC). Here MDEC corresponds to a set
of actions MDEC(γ), where γ = 1, 2, We have

INC: b∗k+1 = κ; DEC: b
∗
k+1 = −κ; MDEC(γ): b∗k+1 = −(1 − 2−γ)Bk ,

where κ > 0 is a step-size parameter, which we choose
empirically. ACP attempts to achieve b∗k+1 by setting λk ap-
propriately. It can be shown that (we skip details), λk =
(1/Z) + (b∗k+1/T). Figure 4b summarizes how ACP chooses
its action uk as a function of bk and δk .

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

700

UPDATE

C
ACK

U

U

. . .

ACP
Source Monitor

ACP

OPEN ACP
LISTEN

ESTAB

CLOSE ACP
CLOSED

. . .C

U

I

U

(a)

1

YESNO

YES

YES

YESYESYESNO NONO

NO

NO

Calculate

SOURCE

(b)

Figure 4: (a) Timeline of an ACP connection. The boxed C denotes the ACP algorithm (Fig. 4b) executed when a new control
epoch begins. The boxedU is executedwhen anACK is received and updatesZ ,RTT, and T . (b) Control algorithmat the source.
The source ACP targets a reduction in average backlog

over the next epoch in case (a) bk > 0, δk > 0 or (b) bk <
0, δk < 0. The first condition indicates that the update rate is
such that update packets are experiencing larger than opti-
mal delays. ACP attempts to reduce backlog multiplicatively
to reduce congestion delays and in the process reduce age
quickly. Every consecutive occurrence of this case (tracked
by increasingγ by 1 every time) attempts to decrease backlog
even more aggressively, which is by a larger power of 2.

The second condition bk < 0, δk < 0 captures a reduction
in both age and backlog. ACP greedily aims at reducing
backlog further hoping that age will reduce too. It attempts
multiplicative decrease if the previous action did so. Else, it
attempts an additive decrease.
The source ACP targets an increase in average backlog

over the next control epoch in case (a) bk < 0, δk > 0 or (b)
bk > 0, δk < 0. The first condition hints at too low an update
rate causing an increase in age. So, ACP additively increases
backlog. On the occurrence of the second condition ACP
greedily increases backlog.
When the condition bk < 0, δk > 0 occurs, ACP checks

if the previous action attempted to reduce the backlog. If
yes, and if the actual change in backlog was much smaller
than the desired, ACP reduces backlog multiplicatively. This
helps counter situations where the increase in age is in fact
because of increasing congestion.

3 RESULTS AND FUTUREWORK
Simulation Results: Our source sent constant sized (1024
bytes) updates to a monitor 1 to 3 hops away. Each hop
was assigned a link rate of either 1 or 5 Mbps. To exemplify,
in Table 1, 1-1-5 corresponds to a network with three hops,
where the first and second hops have rates of 1 Mbps and
the last hop (to the monitor) has a rate of 5 Mbps. The ta-
ble compares the average age, backlog, and update rate λ to

5 10 15 20 25 30
Time(s)

0.15
0.2
0.25
0.3

Ag
e(
s)

5 10 15 20 25 30
0

50

100

Ba
ck
lo
g

Figure 5: Sample average backlog and age obtained using
ACP, for κ = 1, in a real-world experiment over the Internet.
which ACP converges with those found to be optimal (Opt)
via Monte-Carlo simulations over a range of rates λ.

Real-World Experiments: The source sent updates to a mon-
itor over the Internet (15-20 hops). We did about 50 exper-
iments of 1000 packets each, during different times of the
day. Figure 5 illustrates backlog and age as a function of time.
ACP increases backlog conservatively while this results in
reduction of age and starts decreasing backlog aggressively
once age increases.
In the future, we plan on simulating significantly more

complex network topologies including multiple routes to
the monitor, packet errors due to congestion and link errors,
random update packet sizes, and presence of other traffic
flows. In addition, we are working toward a better analytic
understanding of age control in the Internet.

REFERENCES
[1] Maice Costa et al. 2016. On the age of information in status update

systems with packet management. IEEE Transactions on Information
Theory 62, 4 (2016), 1897–1910.

[2] E. Sert et al. 2018. Optimizing age of information on real-life TCP/IP con-
nections through reinforcement learning. In 2018 26th Signal Processing
and Communications Applications Conference (SIU). 1–4.

[3] Henning Schulzrinne et al. 2003. RTP: A transport protocol for real-time
applications. Technical Report.

[4] Yin Sun et al. 2017. Update or wait: How to keep your data fresh. IEEE
Transactions on Information Theory 63, 11 (2017), 7492–7508.

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

701

	Abstract
	1 Introduction
	2 Workings of the ACP
	3 Results and Future Work
	References

