

ACP: Age Control Protocol for Minimizing Age of Information over the Internet

Tanya Shreedhar^{*}, Sanjit K. Kaul^{*} and Roy D. Yates[#] *Wireless Systems Lab, IIIT-Delhi, #WINLAB, Rutgers University

Monitoring in Smart Environments

➢ 50.1 billion IoT devices connected to internet by 2020 [1]

Traditional Voice/Video/File download desire higher throughput/low delay and jitter

Good Age Control Strategy

Update Rate-High, Delay-High, Age-High

Update Rate-Low, Delay-Low, Age-High

- Real-time monitoring values freshness of an update
 - Is highly loss resilient

Ideal snapshot of updates in transit

Put as many updates in transit so that they avoid waiting for other queued updates

Age! Neither Throughput Nor Delay

Age = Measure of freshness of update at monitor **Age of Information (Aol)** = Time-Average Age **High rate of update** \rightarrow congestion/delays \rightarrow High Aol Low rate \rightarrow infrequent updates/old estimates \rightarrow High Aol

Aol minimizing update rate exists!

Control Algorithm

Challenge: Age Control Over the Internet

AIM: Minimize Aol of Updates at the Monitor

> Adapt rate to changing network congestion conditions Use only end-to-end measurements of the network

ACP Stack and Connection

Updates Over the Internet

Source in India sending updates to a monitor Setup: in Finland (≈ 20 hops)

> 28% improvement over Lazy (once per RTT) **Results:** However, similar RTTs!

Increases backlog conservatively till age decreases Decreases backlog aggressively once age increases

Init: Sets the initial send rate

Control: Decides the sending rate till next control epoch based on changes is Age δ_k and changes in Backlog b_k

Est: Updates the average RTT on reception of ACK

- > TCP friendliness, fairness between ACP sessions
- Evaluate ACP over dense wireless networks
- Analytical understanding of Age Control over the Internet

[1] Broadband by the numbers, 'https://www.ncta.com/broadband- by-the-numbers' [2] Kaul, Sanjit, Roy Yates, and Marco Gruteser. "Real-time status: How often should one update?." INFOCOM, 2012 [3] Yates, Roy D. "Lazy is timely: Status updates by an energy harvesting source." *ISIT, 2015*

acklog

മ് 20