

Redesigning MPTCP for Edge Clouds

Nitinder Mohan^{\top} Tanya Shreedhar^{\perp} Jussi Kangsharju[⊤] ^TUniversity of Helsinki, Finland

Otto Waltari[⊤] Aleskandr Zavodovski[⊤] Sanjit K. Kaul \perp [⊥]IIIT Delhi, India

Rise of Edge Clouds

- Applications like IoT, AR/VR require low network delay that datacenters fail to provide • Edge cloud is collection of compute-capable servers deployed close to users
 - Edge server has multiple network interfaces of different access technologies^[1]

Receiver-Assisted MPTCP (RAMPTCP)

Enables MPTCP sender to consider receiver-side metrics (along with SRTT) in control decisions e.g. channel utilization, signal strength, path loss% ... Goal: Reduce delays due to re-ordering &

e.g. Ethernet, WiFi, LTE, .. etc. Advantage: Low delay due to localized connectivity over public network **Problem:** Cloud technologies (e.g. VM migration)

are designed for managed networks

Multipath TCP over Edge

MPTCP^[2] is TCP extension which forms multiple parallel TCP flows over available NICs

Usage:

Benefits: Robustness, reliability, bandwidth aggregation, seamless handovers etc. Apple Siri^[3], Citrix NetScaler^[4], Korea Telecom^[5], ...

re-transmissions

System Design

detailed delays

Preliminary Evaluation

ns3 topology where both sender & receiver are equipped with two 802.11g NIC Packet loss on B1 NIC (flow 1) from 2-5 secs

Result:

↓Re-transmissions **58%** 19% **Throughput**

Discussion & Future Work

Embedding receiver-metrics in packets? →ACK, TCP data, MPTCP Data Sequence Signal RAMPTCP control decisions?

- →Limit packet injections, packet duplication, TCP rate change etc.
- Network applicability?
 - →Zero dependence on underlying NIC

References

[1] CISCO edge server data spec sheet [2] https://www.multipath-tcp.org/ [3] https://support.apple.com/en-us/HT20137 [4] https://www.citrix.com/blogs/2013/05/28/maximize-mobile-userexperience-with-netscaler-multipath-tcp/ [5] http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html