
An Age Control Transport Protocol for Delivering
Fresh Updates in the Internet-of-Things
Tanya Shreedhar

Wireless Systems Lab, IIIT-Delhi
tanyas@iiitd.ac.in

Sanjit K. Kaul
Wireless Systems Lab, IIIT-Delhi

skkaul@iiitd.ac.in

Roy D. Yates
WINLAB, Rutgers University

ryates@winlab.rutgers.edu

Abstract—Internet-of-Things (IoT) applications have sources
sense and send their measurement updates over the Internet to a
monitor (control station) for real-time monitoring and actuation.
Ideally, these updates would be delivered fresh, at a high rate
constrained only by the supported sensing rate. However, such
a rate may lead to network congestion related delays in delivery
of updates at the monitor that make the freshest update at the
monitor unacceptably old for the application. Alternately, at low
rates, while updates arrive at the monitor with smaller delays,
new updates arrive infrequently. Thus, both low and high rates
may lead to an undesirably aged freshest update at the monitor.

We propose a novel transport layer protocol, namely the Age
Control Protocol (ACP), which enables timely delivery of such
updates to monitors over the Internet in a network-transparent
manner. ACP adapts the rate of updates from a source such
that the average age of updates at the monitor is minimized.
We detail the protocol and the proposed control algorithm. We
demonstrate its efficacy using extensive simulations and real-
world experiments, including wireless access for the sources and
an end-to-end connection with multiple hops to the monitor.

I. INTRODUCTION

Inexpensive IoT devices have led to the proliferation of
a relatively new class of real-time monitoring systems for
applications such as health care, smart homes, transportation,
and natural environment monitoring. Devices repeatedly sense
various physical attributes of a region of interest, for example,
traffic flow at an intersection. This results in a device (the
source) generating a sequence of packets (updates) containing
measurements of the attributes. A more recently generated
update contains a more current measurement. The updates are
communicated over the Internet to a monitor that processes
them and decides on any actuation that may be required.

For such applications, it is desirable that freshly sensed
information is available at monitors. However, simply gen-
erating and sending updates at a high rate over the Internet
is detrimental to this goal. In fact, freshness at a monitor is
optimized by the source smartly choosing an update rate, as
a function of the end-to-end network conditions. Freshness at
the monitor suffers when a too small or a too large rate of
updates is chosen by the source. See, for example, [7, Figure
3] for how age at the monitor varies as a function of source
rate for simple first-come-first-served queues with memoryless
arrival and service processes.

The requirement of freshness is not akin to requirements of
other pervasive real-time applications like voice and video.
While resilient to packet drops to a certain degree, they
require end-to-end packet delays to lie within known limits
and would like small end-to-end jitter. Monitoring applications
may achieve a low update packet delay by simply choosing
a low rate at which the source sends updates. This, however,
may be detrimental to freshness, as a low rate of updates can
lead to a large age of sensed information at the monitor, simply
because updates from the source are infrequent. More so than
voice/video, monitoring applications are exceptionally loss
resilient and they don’t benefit from the source retransmitting
lost updates. Instead, the source should continue sending new
updates at its configured rate.

At the other end of the spectrum are applications like
that of file transfer that require reliable transport and high
throughputs but are delay tolerant and use the transmission
control protocol (TCP). The congestion control algorithm
of TCP, which optimizes the use of the network pipe for
throughput, is detrimental to keeping age low. We detail the
impact of TCP on age in [11, Section 3]1. Its features of packet
retransmissions and in-order delivery can keep fresh packets
waiting at the monitor TCP for older packets to be successfully
received. This causes large increases in age on transmission
errors. Also, small sized updates may age more than larger
ones as the congestion window size doesn’t increase till a
sender maximum segment size bytes are acknowledged. This
delays the delivery of updates with fewer bytes.

Unlike TCP, UDP ignores dropped packets and delivers
packets to applications as soon as they are received. This
makes it desirable for age sensitive applications. In fact, while
ACP chooses the best rate of sending updates, it uses UDP to
transport them over the Internet.

Our specific contributions are listed next.
(a) We propose the Age Control Protocol (detailed in Sec-
tions II, III, IV, and V), a novel transport layer protocol for
real-time monitoring applications that aims to deliver fresh
updates over the Internet. ACP regulates the rate at which
a source sends its updates to a monitor over its end-to-end
connection in a manner that is application independent and
makes the network transparent to the source.

1We don’t include evaluation of TCP in this paper because of limited space.978-1-7281-0270-2/19/$31.00 c©2019 IEEE
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Figure 1: The ACP end-to-end connection.

The goal is to keep the average age of sensed information
at the monitor to a minimum, where the age of an update is
the time elapsed since its generation by the source. Based on
feedback from the monitor, ACP adapts rate to the perceived
congestion in the Internet. Consequently, ACP also limits
congestion that would otherwise be introduced by sources
sending to their monitors at unnecessarily fast update rates. We
argue that ACP, unlike other transport protocols like TCP and
RTP, must maintain just the right number of update packets
in transit at any given time.
(b) We provide an extensive evaluation of ACP (Sec-
tions VI, VII and VIII) using network simulations and real-
world experiments in which one or more sources sends packets
to monitors. To exemplify, over an inter-continental end-to-
end IP connection with a median round-trip-time of about 185
msec, ACP achieves a significant reduction in the median age
of about 100 msec (≈ 33% improvement) over age achieved
by a protocol that sends one update every RTT.

We end this section with a brief on the related art. Prior
works [5]–[7] have analyzed the metric of age of sensed
information (AoI) for queue theoretic abstractions of networks.
Works have considered optimizing age for multiple sources
sharing a communication link, for example, [3], [4]. AoI has
been analyzed under a variety of link scheduling methods
[8], [13]. Multihop networks have also received attention [14].
Notably, optimality properties of a Last Generated First Served
service when updates arrive out of order are found in [1].

Such AoI literature has focused on analytically tractable
simple models. Moreover, a model for the system is typically
assumed to be known. In this work, our objective has been to
develop end-to-end updating schemes that perform reasonably
well without assuming a particular network configuration or
model. Closer to our goal, more recently, in [9] the authors
proposed a deep Q-learning based approach to optimize age
over a given but unknown network topology. A preliminary
version of our work on ACP appeared as a poster [12].

II. THE AGE CONTROL PROTOCOL

The Age Control Protocol resides in the transport layer of
the TCP/IP networking stack and operates only on the end
hosts. Figure 1 shows an end-to-end connection between two
hosts, an IoT device, and a server, over the Internet. A source
opens an ACP connection to its monitor. Multiple sources may
connect to the same monitor. ACP uses the unreliable transport
provided by the user datagram protocol (UDP) for sending
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Figure 2: Timeline of an ACP connection. The box I marks the
beginning of the initialization phase of ACP. The boxed C denotes
the ACP algorithm (Algorithm 1) executed when a new control epoch
begins. The boxed U is executed when an ACK is received and
updates Z,RTT, and T .

of updates generated by the sources. This is in line with the
requirements of fresh delivery of updates. Retransmissions
make an update stale and also compete with fresh updates
for network resources.

The source ACP appends a header to an update from a
source. The header contains a timestamp field that stores the
time the update was generated. The source ACP suggests to the
source the rate at which it must generate updates. To be able
to calculate the rate, the source ACP must estimate network
conditions over the end-to-end path to the monitor ACP. This
is achieved by having the monitor ACP acknowledge each
update packet received from the source ACP by sending an
ACK packet in return. The ACK contains the timestamp of
the update being acknowledged. The ACK(s) allow the source
ACP to keep an estimate of the age of sensed information
at the monitor. An out-of-sequence ACK, which is an ACK
received after an ACK corresponding to a more recent update
packet, is discarded by the source ACP. Similarly, an update
that is received out-of-sequence is discarded by the monitor.
This is because the monitor has already received a more recent
measurement from the source.

Figure 2 shows a timeline of a typical ACP connection.
For an ACP connection to take place, the monitor ACP must
be listening on a previously advertised UDP port. The ACP
source first establishes a UDP connection with the monitor.
This is followed by an initialization phase during which the
source sends an update and waits for an ACK or for a
suitable timeout to occur, and repeats this process for a few
times, with the goal of probing the network to set an initial
update rate. Following this phase, the ACP connection may
be described by a sequence of control epochs. The end of the
initialization phase marks the start of the first control epoch.
At the beginning of each control epoch, ACP sets the rate at
which updates generated from the source are sent until the
beginning of the next epoch.

III. THE AGE CONTROL PROBLEM

We will formally define the age of sensed information at
a monitor. To simplify presentation, in this section, we will
assume that the source and monitor are time synchronized,
although the functioning of ACP doesn’t require the same.
Let z(t) be the timestamp of the freshest update received by
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Figure 3: A sample function of the age ∆(t). Updates are indexed
1, 2, . . .. The timestamp of update i is ai. The time at which update
i is received by the monitor is di. Since update 2 is received out-of-
sequence, it doesn’t reset the age process.

the monitor up to time t. Recall that this is the time the update
was generated by the source.

The age at the monitor is ∆(t) = t − z(t) of the freshest
update available at the monitor at time t. An example sample
function of the age stochastic process is shown in Figure 3.
The figure shows the timestamps a1, a2, . . . , a6 of 6 packets
generated by the source. Packet i is received by the monitor at
time di. At time di, packet i has age di−ai. The age ∆(t) at
the monitor increases linearly in between reception of updates
received in the correct sequence. Specifically, it is reset to the
age di− ai of packet i, in case packet i is the freshest packet
(one with the most recent timestamp) at the monitor at time
di. For example, when update 3 is received at the monitor,
the only other update received by the monitor until then was
update 1. Since update 1 was generated at time a1 < a3, the
reception of 3 resets the age to d3−a3 at time d3. On the other
hand, while update 2 was sent at a time a2 < a3, it is delivered
out-of-order at a time d2 > d3. So packet 2 is discarded by
the monitor ACP and age stays unchanged at time d2.

We want to choose the rate λ (updates/second) that min-
imizes the expected value limt→∞E[∆(t)] of age at the
monitor, where the expectation is over any randomness in-
troduced by the network. Note that in the absence of a priori
knowledge of a network model, as is the case with the end-
to-end connection over which ACP runs, this expectation is
unknown to both source and monitor and must be estimated
using measurements. Lastly, we would like to dynamically
adapt the rate λ to nonstationarities in the network.

IV. GOOD AGE CONTROL BEHAVIOR AND CHALLENGES

ACP must suggest a rate λ updates/second at which a source
must send fresh updates to its monitor. ACP must adapt this
rate to network conditions. To build intuition, let’s suppose that
the end-to-end connection is well described by an idealized
setting that consists of a single first-come-first-served (FCFS)
queue that serves each update in constant time. An update
generated by the source enters the queue, waits for previously
queued updates, and then enters service. The monitor receives
an update once it completes service. Note that every update
must age at least by the (constant) time it spends in service
before it is received by the monitor. It may age more if it ends
up waiting for one or more updates to complete service.

In this idealized setting, one would want a new update to
arrive as soon as the last generated update finishes service. To

ensure that the age of each update received at the monitor is the
minimum, one must choose a rate λ such that new updates are
generated in a periodic manner with the period set to the time
an update spends in service. Also, update generation must be
synchronized with service completion instants so that a new
update enters the queue as soon as the last update finishes
service. In fact, such a rate λ is age minimizing even when
updates pass through a sequence of Q > 1 such queues in
tandem [10]. The update is received by the monitor when it
leaves the last queue in the sequence. The rate λ will ensure
that a generated packet ages exactly Q times the time it spends
in the server of any given queue. At any given time, there will
be exactly Q update packets in the network, one in each server.

Of course, the assumed network is a gross idealization. We
assumed a series of similar constant service facilities and that
the time spent in service and instant of service completion
were known exactly. We also assumed lack of other traffic.
However, the resulting intuition is significant. Specifically, a
good age control algorithm must strive to have as many update
packets of a source in transit as possible while simultaneously
ensuring that these updates avoid waiting for other previously
queued updates of the source2.

As described next, ACP tracks changes in the number of
backlogged packets, which are updates for whom the source
awaits an ACK from the monitor, and average age over short
intervals. In case backlog and age increase, ACP acts to rapidly
reduce the backlog.

V. THE ACP CONTROL ALGORITHM

Let the control epochs of ACP (Section II) be indexed
1, 2, . . .. Epoch k starts at time tk. At t1 the update rate λ1
is set to the inverse of the average packet round-trip-times
(RTT) obtained at the end of the initialization phase. At time
tk, k > 1, the update rate is set to λk. The source transmits
updates at a fixed period of 1/λk in the interval (tk, tk+1).

Let ∆k be the estimate at the source ACP of the time
average update age at the monitor at time tk. This average
is calculated over (tk−1, tk). To calculate it, the source ACP
must construct its estimate of the age sample function (see
Figure 3), over the interval, at the monitor. It knows the time
ai a source sent a certain update i. However, it needs the time
di at which update i was received by the monitor, which it
approximates by the time the ACK for packet i was received.
On receiving the ACK, it resets its estimate of age to the
resulting round-trip-time (RTT) of packet i.

Note that this value is an overestimate of the age of the
update packet when it was received at the monitor, since it
includes the time taken to send the ACK over the network.
The time average ∆k is obtained simply by calculating the
area under the resulting age curve over (tk−1, tk) and dividing
it by the length tk − tk−1 of the interval.

Let Bk be the time average of backlog calculated over
the interval (tk−1, tk). This is the time average of the in-
stantaneous backlog B(t) over the interval. The instantaneous

2Simulations that further build on this intuition may be found in [11]. We
skip them here due to lack of space.
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Figure 4: A snippet from the function of ACP. The y-axis of the
plot showing actions denotes the action and the line number in
Algorithm 1. Note the action marked by the dotted red line. At the
time instant ACP observes an increase in both backlog and age and
chooses (9,DEC) initially. However, there is still a significant jump in
age. This results in the choice of multiplicative decrease (7,MDEC).

backlog increases by 1 when the source sends a new update.
When an ACK corresponding to an update i is received, update
i and any unacknowledged updates older than i are removed
from the instantaneous backlog.

In addition to using RTT(s) of updates for age estimation,
we also use them to maintain an exponentially weighted
moving average (EWMA) RTT of RTT. We update RTT =
(1−α)RTT+αRTT on reception of an ACK that corresponds
to a round-trip-time of RTT.

The source ACP also estimates the inter-update arrival times
at the monitor and the corresponding EWMA Z. The inter-
update arrival times are approximated by the corresponding
inter-ACK arrival times. The length T of a control epoch is
set as an integral multiple of T = min(RTT, Z). This ensures
that the length of a control epoch is never too large and allows
for fast enough adaptation. Note that at sufficiently low rate
λk of sending updates Z is large and at a sufficiently high
update rate RTT is large. At time tk we set tk+1 = tk + T .
In all our evaluation we have used T = 10T . The resulting
length of T was observed to be long enough to see desired
changes in average backlog and age in response to a choice of
source update rate at the beginning of an epoch. The source
updates RTT, Z, and T every time an ACK is received.

At the beginning of control epoch k > 1, at time tk, the
source ACP calculates the difference δk = ∆k −∆k−1 in av-
erage age measured over intervals (tk−1, tk) and (tk−1, tk−2)
respectively. Similarly, it calculates bk = Bk −Bk−1.

ACP at the source chooses an action uk at the kth epoch
that targets a change b∗k+1 in average backlog over an interval
of length T with respect to the kth interval. The actions, may
be broadly classified into (a) additive increase (INC), additive
decrease (DEC), and multiplicative decrease (MDEC). MDEC
corresponds to a set of actions MDEC(γ), where γ = 1, 2, . . ..

Algorithm 1 Control Algorithm of ACP

1: INPUT: bk, δk, T
2: INIT: flag ← 0, γ ← 0
3: while true do
4: if bk > 0 && δk > 0 then
5: if flag == 1 then
6: γ = γ + 1
7: MDEC(γ)
8: else
9: DEC

10: flag ← 1
11: else if bk < 0 && δk > 0 then
12: if flag == 1 && |bk| < 0.5 ∗ |b∗k| then
13: γ = γ + 1
14: MDEC(γ)
15: else
16: INC, flag ← 0, γ ← 0

17: else if bk > 0 && δk < 0 then
18: INC, flag ← 0, γ ← 0
19: else bk < 0 && δk < 0
20: if flag == 1 && γ > 0 then
21: MDEC(γ)
22: else
23: DEC, flag ← 0, γ ← 0

24: update λk
25: wait T

We have

INC: b∗k+1 = κ, DEC: b∗k+1 = −κ,
MDEC(γ): b∗k+1 = −(1− 2−γ)Bk, (1)

where κ > 0 is a step size parameter.
ACP attempts to achieve b∗k+1 by setting λk appropriately.

The estimate of Z at the source ACP of the average inter-
update arrival time at the monitor gives us the rate 1/Z at
which updates sent by the source arrive at the monitor. This
and λk allow us to estimate the average change in backlog over
T as (λk − (1/Z))T . Therefore, to achieve a change of b∗k+1

requires choosing λk = 1
Z

+
b∗k+1

T . Algorithm 1 summarizes
how ACP chooses its action uk as a function of bk and δk.
Figure 4 shows an example of ACP in action.

The source ACP targets a reduction in average backlog over
the next control interval in case either bk > 0, δk > 0 or
bk < 0, δk < 0. The first condition (line 4) indicates that the
update rate is such that updates are experiencing larger than
optimal delays. ACP attempts to reduce the backlog, first using
DEC (line 9), followed by multiplicative reduction MDEC
to reduce congestion delays and in the process reduce age
quickly. Consecutive occurrences (flag == 1) of this case
(tracked by increasing γ by 1 in line 6) attempt to decrease
backlog even more aggressively, by a larger power of 2.

The condition bk < 0, δk < 0 occurs on a reduction in
both age and backlog. ACP greedily aims at reducing backlog
further hoping that age will reduce too. It attempts MDEC
(line 21) if previously the condition bk > 0, δk > 0 was
satisfied. Else, it attempts an additive decrease DEC.

The source ACP targets an increase in average backlog over
the next control interval in case either bk > 0, δk < 0 or bk <
0, δk > 0. On the occurrence of the first condition (line 18)
ACP greedily attempts to increase backlog.

Tanya Shreedhar
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When the condition bk < 0, δk > 0 occurs, we check
if the previous action attempted to reduce the backlog. If
not, it hints at too low an update rate causing an increase
in age. So, ACP attempts an additive increase (line 16) of
backlog. If yes, and if the actual change in backlog was
much smaller than the desired (line 12), ACP attempts to
reduce backlog multiplicatively. This helps counter situations
where the increase in age is in fact because of increasing
congestion. Specifically, increasing congestion in the network
may cause the inter-update arrival rate 1/Z at the monitor to
reduce during the epoch. As a result, despite the attempted
multiplicative decrease in backlog, it may change very little.
Clearly, in such a situation, even if the backlog reduced a little,
the increase in age was not caused because the backlog was
low. The above check ensures ACP attempts reducing backlog
to desired levels. In the above case, if instead ACP ignores the
much smaller than desired change, it will end up increasing
the rate of updates, further increasing backlog and age.

VI. EVALUATION METHODOLOGY

We used a mix of simulations and real-world experiments to
evaluate ACP. While simulations allowed us to test with large
numbers of sources contending with each other over wireless
access under varied wireless channel conditions and densities
of source placements, real-world experiments allowed us to
test ACP over a real intercontinental end-to-end connection.

Figure 5 shows the end-to-end network used for simulations.
We start by describing the wireless access over which sources
connect to AP-1. We performed simulations for 1−50 sources
accessing AP-1 using the WiFi (802.11g) medium access. We
simulated for sources spread uniformly and randomly over
areas of 10×10 m2, 20×20 m2 and 50×50 m2. The channel
between a source and AP-1 was chosen to be Log-Normally
distributed with choices of 4, 8, and 12 for the standard
deviation. The pathloss exponent was 3. WiFi physical (PHY)
layer rates were set to one of 12 Mbps and 54 Mbps. We
simulated for no WiFi retries and a max retry limit of 7.

For the network beyond AP-1, all links were config-
ured to be P2P. We set the P2P link rates from the set
{0.3, 0.6, 1.2, 6.0} Mbps. This was to simulate network RTT
of a wide range. We used the network simulator ns33 together
with the YansWiFiPhyHelper4. Our simulated network is how-
ever limited in the number of hops, which is six.

3https://www.nsnam.org/
4https://www.nsnam.org/doxygen/classns3 1 1 yans wifi phy.html

We also evaluated ACP in the real-world by making 2− 10
sources connected to an enterprise WiFi access point, which
is part of a university network, send their updates over the
Internet to monitors that were running on a server with a global
IP on another continent. This setup allows us to test ACP over
a path with large RTT(s) and tens of hops. While the WiFi
access point doesn’t see much other traffic, we don’t control
the interference that may be created by adjoining access points
or WiFi clients. Lastly, we had no control over the traffic on
the university intranet when the experiments were performed.

To compare the age control performance of ACP, we use
Lazy. Lazy, like ACP, also adapts the update rate to network
conditions. However, it is very conservative and keeps the
average number of update packets in transit small. Specifically,
it updates the RTT every time an ACK is received and sets
the current update rate to the inverse of RTT. Thus, it aims at
maintaining an average backlog of 1.

We end by stating that an appropriate selection of step size
κ is crucial to the proper functioning of ACP. We chose it by
hit and trial. For simulations, we found a step size of κ = 0.25
to be the best. However, this turned out to be too small for
experiments over the Internet. For these, we tried κ ∈ {1, 2}.

Next, we will discuss the simulation results followed by the
real-world results.

VII. SIMULATION RESULTS
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Figure 6: (a) Average source age (b) Average source backlog (c)
Average source RTT and (d) Update rate λ for Lazy and ACP when
all links other than wireless access are 6 Mbps. All sources used a
WiFi PHY rate of 54 Mbps. The sources are spread over an area of
100 m2. The standard deviation of shadowing was set to 4 dB.

Figure 6 compares the average age, source update rate λ,
the RTT, and the average backlog, obtained when using ACP
and Lazy. We vary the number of sources in the network from
1 to 20. For smaller numbers of sources, the backlog (see
Figure 6b) per source maintained by ACP is high. This is
because, given the similar rate P2P links and higher rate WiFi
link, when using ACP, the sources attempt to have their update
packets in the queues of the access points and routers in the
network. On the other hand, a source using Lazy sticks to
sending just one packet every RTT on an average. Thus, the
average backlog per source stays similar for different numbers
of sources.



As the numbers of sources become large in comparison to
the number of hops (six) in the network, even at an average
backlog of about 1 update per source, there is little value in
a source sending more than one update per RTT. Note that
there are only 6 hops (queues) in the network. When there are
five or more sources, a source sending at a rate faster than
1 every RTT will have its updates waiting for each other to
finish service. This results in ACP maintaining a backlog close
to Lazy when the numbers of sources are 5 and more.

Figure 6d shows the average source rate of sending update
packets. Observe that the average source rate drops in propor-
tion to the number of sources. While the source rate is about
800 updates/second when there is only a single source, it is
about 70 when the wireless access is shared by 20 sources.
This scaling down is further evidence of ACP adapting to
the introduction of larger numbers of sources. While a source
using ACP ramps down its update rate from 800 to 70, Lazy
more or less sticks to the same update rate throughout.

This artificial constraint of a very few hops combined
with a single end-to-end path is removed in the real-world
experiments that we present in the next section. As we will see,
sources accessing a common access point will maintain high
backlogs over their end-to-end connections to their monitors.

The absolute improvements in average age achieved by
ACP, see Figure 6a, for fewer numbers of sources seem
nominal but must be seen in light of the fact that end-to-
end RTT of the simulated network under light load conditions
is very small (about 5 msec as seen in Figure 6c). ACP
achieves a 21% and 13% reduction in age with respect to
Lazy, respectively, for a single source and two sources.

The only impact that changing the link rates of the P2P
links had was a corresponding change in RTT and Age. For
example, while the average age achieved by a source using
ACP in a 20 source network with P2P link rates 0.3 Mbps
was ≈ 6 seconds, it was ≈ 0.25 seconds when the P2P link
rates were set to 6.0 Mbps. The larger RTT for the latter meant
smaller λ of about 5 updates/second/source. The backlogs, as
one would expect, were similar, however.
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Figure 7: (a) Age and (b) retry rate as a function of number and
density of sources and maximum retry limit. The vertical bars denote
a region of ±1 standard deviation around the mean (marked).

Next consider Figure 7a that shows the impact of maximum
allowed retries, numbers of sources (varied from 5 to 50), and
source density (areas of 50 × 50 m2 and 20 × 20 m2), on
average age. The standard deviation of shadowing was set to
12. Note that age is similar for the two simulated areas for a

Figure 8: ACP adapts to network changes. Blue circles show the
achieved age by an ACP client over time. A UDP client of rate 0.2
Mbps is connected to AP-1 at 200 − 400 secs and 1000 − 1200
secs. Another UDP client of rate 0.3 Mbps is connected to AP-2
at 600 − 800 secs and 1000 − 1200 secs. A darker shade of pink
signifies a larger aggregate UDP load on the network.

given setting of maximum retries. However, it is significantly
larger for when the max retry limit is set to 7 in comparison
to when no retries are allowed. This is especially true when
the network has larger numbers of sources. Larger numbers
of sources witness higher rates of retries (Figure 7b, retry
limit is 7) due to a higher rate of packet decoding errors that
result from collisions over the WiFi medium access shared
by all sources. Retries create a two-fold problem. One that
a retry may keep a fresher update from being transmitted.
Second, ACP, like TCP, confuses packet drops due to channel
errors to be network congestion. This causes it to unnecessarily
reduce λ in response to packet errors, which increases age.
In summary, retries at the wireless access are detrimental to
keeping age low. Finally, observe in Figure 7a that the spread
of ages achieved by sources is very small. In fact, we see
that sources in a network achieve similar ages and in all our
simulations the Jain’s fairness index [2] was found to be close
to the maximum of 1.

ACP adapts rather quickly to the introduction of other flows
that congest the network. This is exemplified by Figure 8. We
introduced one to two UDP flows at different points in the
network used for simulation (Figure 5), where all links are
1 Mbps. ACP reduces λ appropriately and adapts backlog to
desired levels.

VIII. INTER-CONTINENTAL UPDATES

We will show results for when 10 sources sent their updates
to monitors on a server in another continent. The sources, as
described earlier, gained access to the Internet via an enterprise
access point. The results were obtained by running ACP and
Lazy alternately for 10 runs. Each run was restricted to 1000
update packets long so that on an average ACP and Lazy
experienced similar network conditions. We ran ACP for κ = 1
and κ = 2. Using traceroute, we observed that the number of
hops was large, about 30, during these experiments.

Figure 9 summarizes the comparison of ACP and Lazy.
Figure 9a shows the cumulative distribution functions (CDF)
of the average age obtained by each source when using ACP
(using κ = 1) and the corresponding CDF(s) when using Lazy.
As is seen in the figure, ACP outperforms Lazy and obtains
a median improvement of about 100 msec in age (≈ 33%
over average age obtained using Lazy). This over an end-to-
end connection with median RTT of about 185 msec. Further,
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Figure 9: We compare the CDF(s) of average (a) Age (b) RTT and (c) Backlog obtained over 10 runs each of Lazy and ACP with step
size choices of κ = 1, 2. The Age CDF(s) of all the 10 sources are shown.
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Figure 10: The time evolution of average backlog and age that
resulted from one of the ACP source sending updates over the
Internet.

observe that the age CDF(s) for all the sources when using
either ACP or Lazy are similar. This hints at sources sharing
the end-to-end connection in a fair manner. Also, observe from
Figure 9b that the median RTT(s) for both ACP and Lazy are
almost the same. This signifies that ACP maintains a backlog
of update packets in a manner such that the packets don’t suffer
additional delays because multiple packets of the source are
traversing the network at the same time.

Lastly, consider a comparison of the CDF of average
backlogs shown in Figure 9c. ACP exploits very well the fast
end-to-end connection with multiple hops and achieves a very
high median average backlog of about 30 when using a step
size of 1 and a much higher backlog when using a step size
of 2. We observe that step size κ = 1 worked best age wise.
Lazy, however, achieves a backlog of about 1 (not shown).

We end by showing snippets of ACP in action over the
end-to-end path. Figures 10a and 10b show the time evolution
of average backlog and average age, as calculated at control
epochs. ACP increases backlog in small steps (see Figure 10a,
14 seconds onward) over a large range followed by a rapid
decrease in backlog. The increase coincides with a reduction
in average age, and the rapid decrease is initiated once age
increases. Also, observe that age decreases very slowly (dense
regions of points low on the age curve around the 15 second
mark) with an increase in backlog just before it increases
rapidly. The region of slow decrease is around where, ideally,
backlog must be set to keep age to a minimum.

IX. CONCLUSIONS

We proposed the Age Control Protocol, which is a novel
transport layer protocol for real-time monitoring applications
that desire the freshness of information communicated over the
Internet. ACP works in an application-independent manner. It

regulates the update rate of a source in a network-transparent
manner. We detailed ACP’s control algorithm that adapts the
rate so that the age of the updates at the monitor is mini-
mized. Via network simulations and real-world experiments,
we showed that ACP adapts the source update rate well to
make an effective use of network resources available to the
end-to-end connection between a source and its monitor.
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